Advance Information

Power MOSFET

60 V, 62 A, 13 mΩ

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

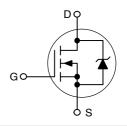
Parameter		Symbol	Value	Units	
Drain-to-Source Voltage		V_{DSS}	60	V	
Gate-to-Source Voltage	e – Contin	uous	V_{GS}	±20	V
Gate–to–Source Voltage – Non–Repetitive (t _p = 10 μs)		V_{GS}	±30	V	
Continuous Drain	Steady	T _C = 25°C	I _D	62	Α
Current – R _{θJC} (Note 1)	State	T _C = 100°C		44	
Power Dissipation –	Steady	T _C = 25°C	P_{D}	107	W
R _{θJC} (Note 1)	State	T _C = 100°C		54	
Pulsed Drain Current	t _p = 10 μs		I _{DM}	247	Α
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to 175	°C	
Source Current (Body D	Source Current (Body Diode) Pulsed		Is	62	Α
Single Pulse Drain-to Source Avalanche		EAS	75	mJ	
Energy – (L = 0.1 mH)		IAS	40	Α	
	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

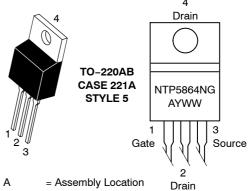
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Case (Drain) - Steady State (Note 1)	$R_{\theta JC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	33	°C/W

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX (Note 1)
60 V	13 mΩ @ 10 V	62 A

N-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

= Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NTP5864NG	TO-220 (Pb-Free)	50 Units / Rail

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				58		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	T _J = 25°C			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _C	_{SS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{E}$) = 250 μΑ	2.0		4.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-10		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 20 A		10.3	13	mΩ
Forward Transconductance	9FS	V _{DS} = 15 V,	I _D = 20 A		10		S
CHARGES AND CAPACITANCES							•
Input Capacitance	C _{ISS}				1640		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = 2$	1.0 MHz, 25 V		190		
Reverse Transfer Capacitance	C _{RSS}				120		
Total Gate Charge	Q _{G(TOT)}				30		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 20 \text{ A}$			1.9		
Gate-to-Source Charge	Q_{GS}				7.5		
Gate-to-Drain Charge	Q_{GD}				10		
Gate Resistance	R_g				0.5		Ω
SWITCHING CHARACTERISTICS, Vo	as = 10 V (Note	3)					
Turn-On Delay Time	t _{d(ON)}				10		ns
Rise Time	t _r	V _{GS} = 10 V, V	_{DD} = 48 V,		6.4		
Turn-Off Delay Time	t _{d(OFF)}	I _D = 20 A, R			18		
Fall Time	t _f				4.6		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.94	1.2	V
		I _S = 40 A T _J = 125°C			0.84		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 20 \text{ A}$			24		ns
Charge Time	ta				15		
Discharge Time	t _b				8.7		
Reverse Recovery Charge	Q _{RR}				20		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

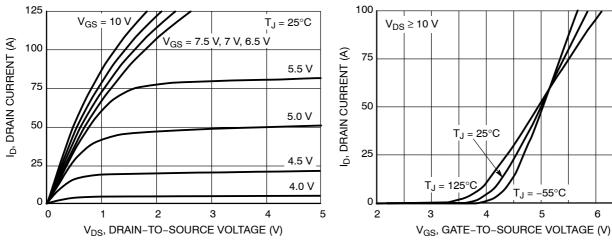


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

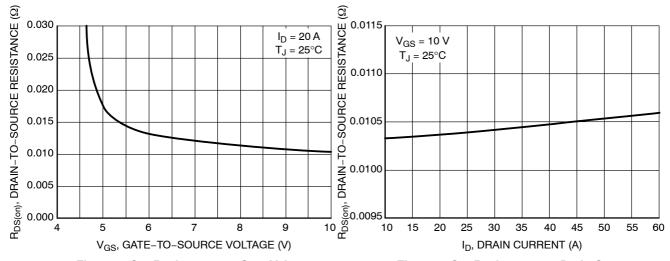


Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

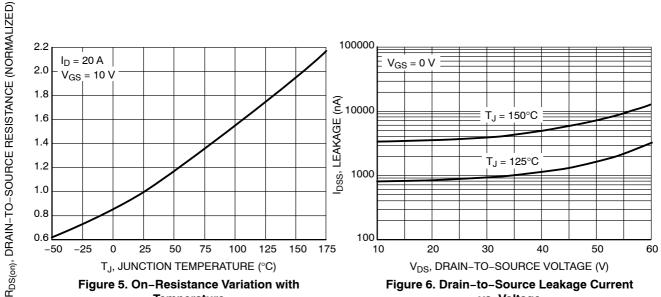


Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

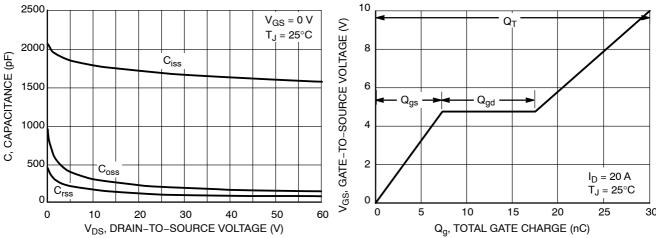


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

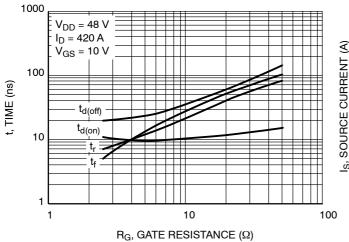


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

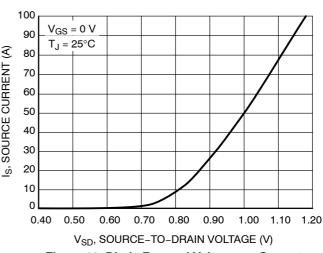


Figure 10. Diode Forward Voltage vs. Current

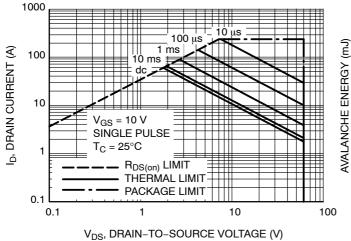


Figure 11. Maximum Rated Forward Biased Safe Operating Area

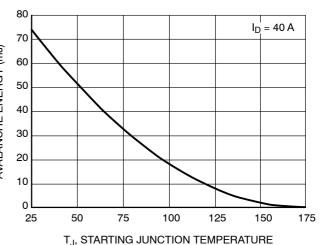


Figure 12. Maximum Avalanche Energy versus
Starting Junction Temperature

TYPICAL CHARACTERISTICS

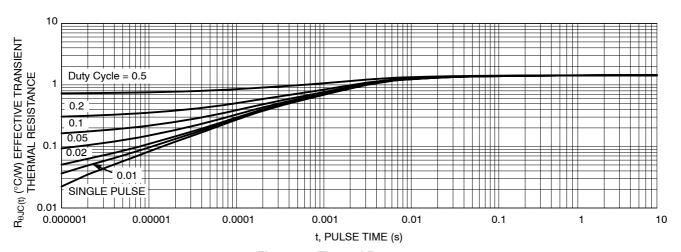
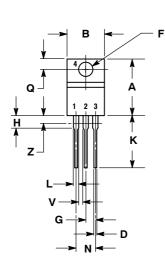
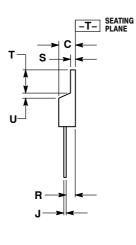




Figure 13. Thermal Response

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AF**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
۲	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Ö	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 5:

PIN 1. GATE

- DRAIN 2. SOURCE
- 3. DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative